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Random-Random Walk on an Asymmetric 
Chain with a Trapping Attractive Center 
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The random walk of a particle on an asymmetric chain in the presence of an 
attractive center, possibly trapping, is examined by means of the equivalent 
transfer rates technique. Both the situations of ordered and disordered hopping 
rates are studied. It is assumed that initially the particle is located on the attrac- 
tive center. The (average) probability of presence of the particle at its initial 
point is computed as a function of time. In the ordered case this quantity 
decreases exponentially toward its limiting value (with in certain cases an 
inverse power-law prefactor), while in the presence of disorder it decreases 
according to a power law, with an exponent depending both on disorder and on 
asymmetry. When the possibility of trapping is taken into account, this model 
is relevant for the description of the transfer of energy in a photosynthetic 
system. The amount of energy conserved within the chain, as a function of time, 
and the average lifetime of the particle before it is captured by the trap are 
examined in both ordered and disordered situations. 

KEY WORDS: Fluctuation phenomena; random walks; disordered media. 

1. I N T R O D U C T I O N  

In the present paper we consider the random walk of a particle on a 
Euclidean one-dimensional asymmetric lattice when an attractive center, 
possibly trapping, is present. By asymmetric we mean a lattice in which the 
two hopping rates corresponding to a given bond depend a priori  on the 
direction. Both situations of ordered and disordered hopping rates are 
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considered. In the disordered case we are faced with a particular version of 
the so-called random-random walk problem. 

Most of the previous studies of random-random walks have been 
devoted to the biased chain model in the presence of a local random force 
(e.g., ref. 1). There the questions of interest were the determination of the 
average probability of presence of the particle at its initial site and the 
study of its drift and diffusion properties, which in the presence of a local 
random force may be anomalous when the disorder is sufficiently strong. 

However, other arrangements of the transfer rates may deserve study, 
for instance, systems with an attractive center. (2~ We consider here such a 
system, more specifically, a chain in which the mean bias is directed toward 
a given fixed point. Moreover, we allow for the possibility for the particle 
to be trapped by this center. 

This model is mathematically interesting and also relevant in the 
problem of photosynthesis. For  example, in a photosynthetic molecule a 
typical arrangement is one trap (called a reaction center) surrounded by a 
number of sites (called antenna chlorophyll molecules). (3'4~ The trap is at 
the center, and antenna molecules are around it in planar configurations. 
The transfer rates are larger for the transfer directed toward the trap. 
Linear geometries are also of interest. (3'4~ We consider here a one-dimen- 
sional model in which, for the sites to the right of the trap, the hopping 
rates toward the left are larger than the ones toward the right, and the 
reverse is true for the sites to the left of the trap. 

In the problem of photosynthesis, the first quantity of interest is the 
amount of energy conserved within the chain, as measured by the sum of 
probabilities of presence of the particle on the different sites, denoted s(t) = 
Y~=-oo p,(t). This quantity is proportional to the measured fluorescence 
intensity. Because of the existence of the trap, s(t) goes to zero as t--+ oo. 
The second quantity of interest is the lifetime of the particle before it is 
captured by the trap, denoted 5~ s(t)dt. We aim at studying the effect of 
disorder on these two quantities. 

For  practical purposes, it is simpler to treat the disordered case in the 
continuous limit. In both the ordered and disordered cases, we will use the 
equivalent transfer rates technique, as first introduced in refs. 6 and 7 (see 
also refs. 8 and 9). In the ordered case we shall compute the probability of 
presence of the particle at its initial site as a function of time, denoted 
p(0, t). In the disordered case the same technique allows for the exact 
computation of the disorder average of the probability density of presence 
of the particle at its initial site, denoted (p(0,  t )) .  

The paper is organized as follows. In Section 2 we describe the model 
in the ordered and disordered situations. In Section 3 we briefly recall how, 
in the disordered situation, the equivalent transfer rates technique allows 
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for the computation of (p(0,  t )) .  In Section 4 we determine the asymptotic 
behavior of p(0, t) in the ordered case, successively without and with the 
possibility of trapping on the attractive center. Then, in Section 5, we 
calculate (p(0,  t ) )  when a local random force is present. As a result, while 
in an ordered medium p(0, t) decreases exponentially toward its limiting 
value (with in certain cases an inverse power-law prefactor), in the presence 
of disorder (p(0,  t ) )  decreases according to a power law, with an exponent 
depending both on disorder and on asymmetry. This conclusion holds 
irrespective of the absence or of the presence of a trap on the attractive 
center. Disorder thus slows down the average motion. Finally, the con- 
sequences on s(t) and on ~ s(t)dt are discussed in Section 6. 

2. T H E  M O D E L  

2.1. A s y m m e t r i c  Chain w i t h  an A t t r a c t i v e  Center  but  w i t h  
No Trap  

The random walk of the particle on the Euclidean asymmetric chain 
is described by the usual master equation, which in the absence of trapping 
effects is written 

dpn(t) 
dt - W~,n+~pn+l(t)+ Wn,~_lp~_~(t)--(Wn+~,~+ W~_~,n)p~(t) (1) 

In Eq. (1), pn(t) denotes the probability of finding the particle on the site 
of index n at time t >/0. The hopping rates may be disordered or not, We 
assume that there exists on this chain an attractive center, which we take 
as site n = 0. 

Let us first give the notations appropriate to the ordered chain. In this 
case all the hopping rates toward the attractive center n = 0 (from both 
sides) are equal and they assume the value W. All the hopping rates in the 
opposite direction, i.e., away from the attractive center, take the value w. Of 
course, since the center is attractive, one has W > w. 

In the disordered case we assume that the hopping rates Wa are 
random variables. They are not assumed to be symmetric, in other words, 
W• is not equal to Wy i. They are independent from one bond to another. 
We exclude the case where any W U vanishes. We adopt here the same 
notations as in a previous study of the random-random walk on a biased 
chain. (s'9) The hopping rates are chosen such that 

Wn~+l D~ ( a F n + ~ )  
. -a2eXp - 2Do 

(2) 
Do 

wn + l,n = a 2  exp \ - - ~ o  / 
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where D O is the diffusion coefficient, a is the spacing of the lattice, and F~ + 1 
may be viewed as a random force between sites n and n + 1. We assume 
that the Fn are distributed according to a Gaussian law, with 

(Fn> =F 
(3) 

<F.Fm>-r2= ~ -- (~n,m a 

We make the following assumption (with obvious notations) 

n~>0, log > 0  

(4) 

n ~< 0, log > 0 

which corresponds to the existence of an attractive center situated at the 
origin. In other words, the average value of the local random force is 
positive for the sites of negative index and negative for the sites of positive 
index. 

It will turn out to be useful for the treatment of the disordered case to 
consider the continuous limit of the master equation (1). This will be done, 
essentially, in order to get exact analytical results in a completely explicit 
form. s As indicated in ref. 9, when the lattice spacing a becomes much 
smaller than x l - -4D~/~,  the master equation (1) can be approximated by 
its continuous limit. This corresponds to a weak disorder on a lattice 
spacing scale. The probability density of the particle position at time t is 
defined by setting p~(t) = ap(x, t). The natural length and time units of the 
continuous model are x~ and 2t~, where the diffusion time tl is linked to 
Xl by x~ = 2 D o t , .  It is convenient to take as reduced variables X = x / x l  
and T =  t/2t,. The dimensionless quantity x 1 p(x, t), denoted for simplicity 
as p(X, T), obeys for X >  0 the Fokker-Planck equation 

ap(X, T) aZp(X, T) (3 
OT OX 2 ~?X [2O(X) p(X, T)] (5) 

where O(X)= ( x /2Do)F(x )  is the dimensionless random force in the 
continuous limit. One sets 

<@(X)> = - / /  
(6) 

<~(X) ~/(X') > -/12 = (~(X- X') 

5 Actually, it can be proved that both discrete and continuous models belong to the same 
universality class, which means  that only the prefactors, but  not  the exponents, of the 
asymptotic laws should depend on whether the calculation is done in a discrete or in a 
continuous medium. (9) 
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with # = 2FDo/a > 0 (average bias directed toward the origin). For X <  0, 
the same Fokker-Planck equation is obeyed by the probability density 
p(X, T), but with kt changed into - # .  The probability density p(X, T) is 
continuous at X =  0. 

2.2. Asymmetr ic  Chain w i th  a Trapping At t ract ive  Center  

If the attractive center situated at the origin is also a trapping center, 
then the master equation (1) has to be modified in order to include the 
trapping effect. It reads 

dp.(t) 
dt = w.,.+lp.+~(t)+ w. .... ip ._~( t ) - (w.+l , .+  w.  ,,,,)p.(t) 

- c6.,op.(t ) (7) 

where c-~ is the trapping rate. Some caution will have to be taken in the 
disordered case when passing to the continuous limit. It will actually be 
necessary to take c of the form c = x~/azc, zc being the characteristic time 
linked to the trap in the continuous medium, in order to keep in this limit 
a nonzero trapping effect. 

3. THE E Q U I V A L E N T  TRANSFER RATES T E C H N I Q U E  

One assumes that, at time t = 0, the particle is situated on site n = 0, 
which means that, initially, the particle is located on the attractive center. 
In an ordered lattice it is possible to avoid this assumption and to take any 
initial position for the particle. In a disordered medium such a calculation 
could probably be done along the same lines. In any case, one can think 
that the final regime in which we are interested is independent of the initial 
position of the particle. 

Let us now recall the main lines of the equivalent transfer rates 
technique. ~s-7) As usual, it is convenient to perform a Laplace transforma- 
tion of the master equation (1) or (7), which are respectively rewritten as 

zPn(z)-(5..o= Wn,.+lP.+l(z)+ W..n 1Pn I(Z) 

- (w.+~,.+ w._~,,,)P.(z) (8) 

when no trap is present, and 

zP.(z)-~.,o= w.,.+mP.+m(Z)+ w.,._~P._l(z) 

- (W.+I , .  + W._I, . )P.(z)-cf . ,oP.(z)  (9) 
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when the origin acts as a trapping center. We have defined 

fo P.(z)  = dt e ~tpn(t ) (Re z > 0) (10) 

From now on, for the sake of simplicity, we shall only consider Eq. (9), 
simply setting c = 0 when no trap is present. It can be rewritten as 

ZPn(Z) = --G2(z) Pn(Z) -~- G2 1(Z) Pn 1(Z) 

zPo(z ) - 1 = - G g ( z )  P o ( z ) -  Go(z  ) P o ( z ) - c P o ( z )  (11) 

zP .(z) = - G  . (z) P .(z)  + G._  l(z) P .+ l(Z) 

(n = 1, 2,...), with the quantities G.+(z) and G2(z  ) defined by 

G+(z) P . ( z ) =  W.+~ ,~P . ( z ) -  W.,n+ IPn+ I(Z), n >~O 
(12) 

G2(z )  P _ . ( z ) = W .  1._.P . ( z ) - W _ . , _ .  IP ._l(Z), n~>0 

In this formulation, the quantities G+(z) and G~-(z) play the role of 
energy-dependent effective transfer rates, toward the right of the sites of 
positive index or toward the left of the sites of negative index, respectively. 
Clearly, they can be used in the ordered as well as in the disordered case. 
In the ordered case, however, their use is not necessary, since any quantity 
of physical interest may be directly extracted from the master equations in 
their form (1) or (7). But in the disordered case for which they are random 
quantities, they provide the most natural way of calculating such a 
quantity as (p(0,  T)) .  

The effective transfer rates obey the recursion relations 

1 1 W . . + 1  1 
- - +  ' ~  n~>0 

Gn+(Z) Wn+l,n mn+l,nZ--}-a2+l(2)' 
(13) 

1 1 W 1 + -n, n-1 n>jO 
a2(z) W_n ~-.  W .  ,_ . z+G.+i(z ) '  

Once they are known, the solution of the master equation can immediately 
be extracted from Eq. (11). For later use let us no te  that, due to the 
assumption (4), the quantities G + (z) and G;-(z) behave proportionally to 
z at small z (this can most easily be seen along the lines developed in 
ref. 8). 

4. EXACT SOLUTION FORrTHE ORDERED C H A I N  

It follows from the recursion relations (13) that in the ordered case the 
effective transfer rates do not depend on the site index, nor on the possible 
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presence of  the trap at the origin. M o r e  specifically, both recursion 
relations (13) reduce to 

1 1 W 1 
- § (14) 

G(z) w w z + G(z) 

which yields 

- ( z  + W - w ) +  L(z + W + w ) 2 - 4 W w ]  1/2 
G(z )  = 2 (15) 

[The sign of the square root is clearly + ,  since G ( z ) ~ w  as z-~ ~ ,  
which indeed gives the proper limiting values p , ( t = 0 ) = b n . 0 . ]  If Z =  
(z + w + W ) / 2 ( w W )  1/2, then we choose the cut for the function (Z  2 -  1) 1/2 
as extending from Z = - 1  to Z = + 1 on the real axis. 

Using the result (15), we can rewrite the Laplace transform Po(z )  of 
po(t) ,  as given by Eq. (11), as 

1 
Po(z )  - c + w - W + [ (z + w + W )  2 - 4w W ]  1/2 (16) 

It is possible to analyze the large-time behavior of the inverse Laplace 
transform of this function. By adding, as usual, the contributions of the 
residue and of the cut, one gets 

po(t)  = {exp[ - t (w + W)] } 

I c + w -  wl 
x [4wW+ (c + w -  w)2] v2 

x (exp{ - t sgn(c + w -  W ) [ 4 w W +  (c + w -  w)z ]  1/2 } + • ( t ) )  (17) 

where the cut contribution 5:( t )  can be cast into the form of the following 
real integral: 

1 ( '2(wW)1/2 ( l -  X2) 1/2 
~ ( t )  ! 

/c J_2(wwU2 [(c + w - m ) / 2 ( w m ) l / 2 ]  2 + 1 - x 2 

x e x p [ x 2 ( w W )  vz t]  dx  (18) 

This formula is valid for any value of the parameters c, W, and W (and it 
would even be valid if the center, instead of being an attractive one, were 
repulsive, that is, if one had W <  w). In the special case c + w -  W =  0, one 
gets the exact closed formula 

po( t )  = e t~,.+ W)io(2(wW)l /2  t) (19) 

where Io is the modified Besselfunction. Let us now analyze the large-time 
behavior of po(t) .  
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4.1. Ordered Chain w i t h o u t  Trap 

Let c=0 .  Since w<  W (attractive center), Eqs. (17) and (18) can be 
rewritten as 

p o ( t ) = - -  
W - - W  -~- 1 f 2(wW)l/2 (1 -- X2) 1/2 

W + w  rcJ =~wVe)l/2 [ ( w -  W)/2(wW)1/212+ l - x =  

x exp[x2(wW) 1/= t] dx 

expand the cut contribution 

(20) 

~ ( t )  into the following It is easy t ~ 
asymptotic series of Bessel functions: 

1 1 
~ ( t )  ~ rc~/2 [ ( w -  w)/2(ww)l /2]  ~ 

x ( _  1) n 1 (wV~) 1/2 t 
,=0 [ ( W -  w)/2(wW)l/=] =" 

x F ( n + ~ ) I n + , ( 2 ( w W ) l / Z t )  (21) 

of which, as ordinarily, we retain only the first term when t is sufficiently 
large. [In Eq. (21), I ,  is the modified Bessel function of order n/~~ By 
adding the corresponding contribution to po(t) and the contribution of the 
residue, one gets at large times 

W - -  w (wW) 1/4 1 
+ exp[ -- ( ~ - -  ~ ) 2  t] (22) po(t) "~ W +  w ( W - -  w) 2 %~ 13/2 

[Note that the same result can be obtained by other methods, e.g., by a 
saddle-point integration in formula (20).] Therefore po(t) tends toward a 
constant and its asymptotic behavior is of the exponential type (with an 
inverse power-law prefactor). Since w # 0, the asymptotic value of po(t) is 
smaller than one, and the probability to find the particle on the rest of the 
chain is equal to 2w/ (W+w) .  A similar derivation yields the asymptotic 
values of the probabilities to find the particle at the sites i n ,  n = 1, 2 ..... 
which are equal to 

W + w  

Note that in the case of the symmetric chain (w = W) the large-time 
behavior of po(t) is easily derived from Eq. (19). One gets a power-law 
decay 

1 
po(t) 2(Tztw)1/2 (23) 
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Correspondingly, in the limit w-~ W, the exponentially decreasing term in 
Eq. (22) has a diverging coefficient, which indicates a crossover toward the 
power-law behavior (23). 

4.2. Ordered Chain with Trap 

If c r  then the trap pumps the energy (or probability) out of the 
chain, i.e., the energy flows toward the trap. Clearly, W - w  is a measure 
of the flux going toward the origin. Therefore c + w -  W is one of the 
relevant parameters. The asymptotic values of all the probabilities pn(t) are 
zero. According to the different possible values of the intensity of pumping 
c and of the bias due to the asymmetry of the transfer rates W -  w, one can 
have the three regimes: 

(i) If c =  W - w ,  as indicated above, then the general formula (17) 
reduces to the simple form (19), which has the asymptotic behavior 

1 
po(t) "~ 2[~t(wW)l/=] 1/2 exp[ - t (x/-w - x/-W) 2 ] (24) 

This decay occurs with a single characteristic time ~1 = ( -~-W-x/-~)  2 

(ii) If c < W -  w, then the pumping is less efficient than the flow due 
to the asymmetry. The cut contribution 5e(t) can be expanded into an 
asymptotic series of Bessel functions similar to (21) with w - W replaced by 
c + w - W ,  

1 1 
5e(t) ~ n~/2 [(c + w - W)/2(wW)m] 2 

• i ,=0 [ ( c +  w -  W)/2(wW)l/2] 2" 

F (n + ~) In+ l(2(wW)l/2 t) (25) • 

Here, again, the term n = 0 yields the dominant contribution of the cut 
integral at large times. By adding this contribution to po(t) and that of the 
residue, one gets at large times 

W - w - c  
po(t) 

[ 4wW+ (c+  w -  W)2] ~/2 

x e x p ( - t { w +  W -  [ 4 w W +  ( c + w -  W)2]m}) 

(wW) v4 1 
+ ( c + w _ W ) 2 x f ~ t s S i e x p [ - ( x / W - x / ' - w ) 2 t  ] (26) 
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One observes here an additional relaxation time 272 ~> 271, which is given by 

272= {w+ w -  [ 4 w W + ( c + w -  w)2] 1/2} 

The first term in Eq. (26) is the dominant one at large times and the decay 
is thus of the exponential type. 

(iii) Finally, if c > W -  w, then the pumping is more efficient than the 
flow due to the asymmetry. The asymptotics of po(t) is given by 

po(t) 
c + w - W  

[ 4 w W +  ( c +  w - W)2] 1/2 

x e x p ( - t { w +  W+ [4wW+ (c+  w -  W)211/2}) 

(wW) ~/4 1 
+ (c + w - W) 2 x / ~  t3/-5 exp[ - (x/ '-W- x/w) 2 t] (27) 

where 271 and 

27; = {w + w +  [ 4 w W +  (c + w -  w)23 1/2} -1 < rl < 272 

are now the two characteristic times. The second term in Eq. (27) is the 
dominant one at large times and the decay is thus of the exponential type 
with an inverse power-law prefactor. 

5. RESULTS FOR A CHAIN  WITH A LOCAL R A N D O M  FORCE 

The effective transfer rates now are random variables. It has been 
shown in ref. 9 that they obey Riccati differential equations, which play the 
role of Langevin equations with a (spatially-dependent) multiplicative 
random noise. Their stationary (i.e., position-independent) probability 
densities H + and H can be determined. However, on a lattice this can 
only be done via the use of an asymptotic matching procedure, while in the 
continuous limit the distributions H + and H can be determined exactly. 
Of course, at large times the results are equivalent, both discrete and 
continuous models belonging to the same universality class. In order to 
have complete explicit results we shall therefore consider the continuous 
limit. 

As a result, the normalized probability density of the transfer rates 
corresponding to the particle situated at the right of the origin can be 
obtained from ref. 9 provided that one takes into account the fact that now 
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the bias is directed toward the origin (which amounts to changing # into 
- #  in the result of ref. 9) 

H+(G+)=2K.(.f_~)exp__ _ G + + (G +) ~ 1 (28) 

Here E=2t~z denotes the reduced variable associated with the Laplace 
variable z, and ~ is defined as usual with the cut on the semi-infinite 
negative real axis; the result involves the modified Bessel function of order 
#, K~. (~~ Similarly, the normalized probability density of the transfer rates 
corresponding to the particle situated at the left of the origin is obtained 
from (9) 

H (G-)  2K,(x/.~)exp__ - G + (G-)  ,-1 (29) 

Note that the two distributions H + and H -  are here identical, in 
contradistinction with the biased chain case. 

5.1. Disordered Chain w i t h o u t  Trap 

In the continuous medium the Laplace transform of p(0, T) is simply, 
for a given configuration of the disordered medium, 

f ;  1 (30) P(O, E) = dE e ETp(O, T) = a + (0, E) + G (0, E) 

The average value of this quantity can be easily calculated since the 
probability densities of G+(0, E) and G-(0, E) are known. One has to 
compute 

;);o (P(0, E) )  = dxdy  1 
x + y  

e x p [ - � 8 9  e x p [ - � 8 9  x -~ ly-~ (31) >( 1 

4E-"K~(x/-E ) 

a formula which can be recast into the simple integral 

(P(0, E) )  =~  f 5  dSS~K:(x /@ ) (32) 

which in turn yields, for any value of E, the closed expression (H~ 

1 [ K~ + '(x/-~) - 11 (33) 
(P(0, E) )  =4/~+2 1_ K~(x/-E ) 
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At small E one gets 

1 2p 2 
(P(0, E))  _ (34) 

E 2 # +  1 

Thus (P(0, T)) tends toward a constant at large times, 

2/./2 
(P(0, T ) ) ~ - -  (35) 

2#+ 1 

It is interesting to discuss the corresponding dynamics, that is, the way in 
which (P(0, T))  tends toward its limit (35). This can be done by properly 
looking at the analytical properties at small E of the ratio of Bessel 
functions 

K~(, ,~) 
.(36) 

which is involved in formula ~_33). Note first that, since K,(z)  has no zeros 
for - ~/2 ~< Arg z ~< ~/2, K~(x/E ) cannot vanish for - zc < Arg E < re. There- 
fore no pole contributes to the Laplace inversion and no exponential decay 
can occur. The ratio (36) is a multiple-valued function with the origin a s  
a branch point, and gives rise to cut contributions introducing power-law 
time tails. Keeping only the leading one among the single-valued terms and 
the leading one among the multiform terms, one has 

K~+I(x/-E)~4#2[1 +21 2, F ( 1 - # ) E  ~] 
K2(x/-E) E /~F(u) 

(37) 

which yields for (P(0, E))  the expansion 

2,u 2 1  2 / . t  V(1 --/.t) 
( P ( O , E ) )  2,u+lE t-21#+ 2~-2~' F(p) E u 1_{_ , . .  (38) 

One thus gets for (P(0, T)) the following asymptotic behavior(12): 

2~ 2 ~ T ~ 
(P(0, T))  2#+  1 ~ 2~-2~ F(#) + " '  (39) 

So (P(0, T))  decreases toward its final value following a power law of time, 
with an exponent - #  which is only a function of disorder and asymmetry. 

Let us now compare the results (22) and (39), which respectively 
correspond to the ordered and to the disordered situations. First, 
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lim r -  ~ (p(0, T ) ) =  2#2/(2# + 1) is an increasing function of #; the largest 
possible value of this quantity is thus obtained in the ordered case (i.e., 
in the limit of infinite #). More interesting is the comparison between the 
two dynamics. The dynamics is exponential (with an inverse power-law 
prefactor) in the ordered case, while it follows a power law of time in the 
disordered one. The characteristic duration of the attraction of the particle 
by the center is thus much larger in the presence of disorder. In other 
words, on the average the dynamics is slowed down by the disorder. One 
recovers here a result analogous to the one previously obtained on a biased 
chain. ~ 

5.2. Disordered Chain with Trap 

Taking the continuous limit of Eq. (11), one now has, for a given 
configuration of the disordered medium, 

1 
P(0, E)=  (40) 

G+(O, E) + G-(O, E) + 2t,/% 

where, as indicated after Eq. (7), vc= (xl/a)c -1 is the characteristic time 
linked to the trap. Using the probability distributions of G+(0, E) and 
G-(0, E), one obtains the average value of P(0, E) as 

fofo ' (P(0, E))  = d x d Y x + y + 2 t l / r  c 

exp[-�89 exp[- �89 x -~ ly ~- (41) X 1 

4e-.x (,Si) 
a formula which can be recast into the simple integral 

1 ~ tl s~ (42)  (P(O,E))=~f I dsexp - - ( s - 1 ) ~  c K2(x/-~) 

One first verifies that 

lim (P(0, T)) = lim E(P(O, E)) =0 (43) 
T ~ o o  E ~ 0  

as it should, since a trap is present. As before, since K~(x/-E) has no zero 
for - ~ < A r g E < n ,  the only contribution arises from the cut. The 
dynamics at large times is governed by the dominant multiform term, that 
is, by 

2_2~E, r ( l - ~  Ire_ (zc) "+1 (44) 
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One thus gets for (p(0,  T)> the following asymptotic behavior (~2/ 

1 [ ( ~ ) ~ +  ex p t, t~ 
<p(0, T)> 22v/~(/1) L \ t ,  / ~ F # + 1 , ~  

(45) 

So (p(0, T)> decreases toward zero following a power law in time, with 
the exponent - (p + I). 

Let us now compare the results (24), (26), and (27) on the one hand, 
and (45) on the other hand, which respectively correspond to the ordered 
and disordered situations. Since there is a trap, l i m , ~  po(t) (in the 
ordered medium) and limT_ 00 (p(0,  T)> (in the disordered one) are zero, 
as should be the case. As for the dynamics, it is exponential for the ordered 
medium (with in certain cases an inverse power-law prefactor), while it 
follows a power law of time for the disordered one. In the presence of a 
trap the dynamics is also slowed down by the disorder. Note that this 
dynamics follows a T -(u+ 1) law in the presence of a trap, while it follows 
a T -u law in its absence. The presence of the trap speeds up the decay 
toward the final value. This behavior on a disordered chain with a trap 
may seem surprising at first sight. Indeed, in the limit rc--, 0 one would 
have expected an exponentially decreasing law, since the particle, initially 
located at the origin, would be absorbed by the trap before having left it. 
But this is not the case. Among the possible configurations of the chain, 
there exist configurations for which the probability of leaving the origin is 
larger than the probability of being absorbed, whatever %. The particle 
then can leave the origin and, as a result, the corresponding dynamics goes 
like T (~+ 1). Since this variation is slower than an exponential, it governs 
the final dynamics. The coefficient of the T -  (~ § 1) law may thus be viewed 
as a kind of measure of the number of chains allowing for some motion 
before complete absorption by the trap. Therefore, this coefficient has to 
vanish when % ~ 0, which is indeed the case. Note that the time scale after 
which this regime appears diverges when r c ~ 0. 

6. CONSEQUENCES ON THE TRANSFER OF ENERGY IN A 
P H O T O S Y N T H  ETIC SYSTEM 

As indicated in the introduction, the model with one trap is relevant 
in the problem of photosynthesis. The trapping site corresponds to the 
reaction center, and the other sites correspond to the antenna chlorophyll 
molecules. (3.4) 

The amount of energy conserved within the chain, as measured by 
the sum of probabilities of presence of the particle on the different sites 
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s( t )  = 52n~= -co pn(t) ,  is proport ional  to the measured fluorescence intensity. 
Because of the existence of the trap, s( t )  decays to zero as t ~ oo. Summing 
up the master equations (7) corresponding to the different probabilities 
p , ( t ) ,  one gets 

d 
-fit s( t ) = - c p o (  t ) (46) 

This equation shows that s( t )  always has a limit for t ~ vo. Indeed, po( t )  
must tend to 0 and s( t )  is a bounded, decreasing function. One has 

s ( t ) =  1 - c  dt'  po( t ' )  (47) 

The Laplace transform of this quantity is 

S(z )  = - -  c Po(z)  (48) 
Z Z 

In the ordered case one easily verifies by looking at Eq. (16) that, since 
W >  w, 

lira s ( t ) =  lira z S ( z ) =  0 (49) 

In the disordered case (in the continuous limit), looking carefully at 
the exact formula (42), and keeping in the expansions at small E of the 
modified Bessel functions both the entire series in powers of E [let us call 
it S ( E ) ]  and the dominant multiform term, one gets 

(P(0,  E ) )  ~ Z'(E) + C s t e - E  ~ 

where 

(50) 

s(E) ~ ~ + ... (51) 

Translating this result to a discrete lattice, one would obtain for ( P o ( z ) )  
the sum of an entire series in powers of z and of some multiform terms, the 
dominant  one varying like z ~. [-Indeed, the exponents in the dominant 
multiform term, which determine the behavior at large times, are the same 
in the discrete and in the continuous models, which ensures the presence of 
the term proport ional  to z ~' in ( P 0 ( z ) ) . ]  As for the entire series, it begins 
by a constant term equal to (l/c). 6 Now, looking at S(z )  as given by 
formula (49), one easily sees that the constant terms in the numerator  

6 This can also be seen by looking at the small-z behavior of GC(z ) and Go(z), showing that 
for any sampling, Po(z = O) = 1/c. 

822/69/1-2-3 
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balance each other and that one is left with the sum of an entire series 
beginning with a constant and of a term proportional to z ~ ~. Thus 

lim s ( t ) =  lim z S ( z ) =  0 (52) 
t ~ a O  z ~ O  

Due to the presence of the trap, s(t) tends here also toward zero, in spite 
of the fact that the motion of the particle toward the trap is slowed down 
by the disorder. At large times it follows from the result (45) that s(t) 
behaves as t -".  

The other quantity of interest in the problem of photosynthesis is the 
total average lifetime of the particle before it is captured by the trap. It is 
given by lim, ~ co O(t), where 

O(t) = F' dt' s( t ' )  (53) 
Jo 

The asymptotic value of this integral is given by 

lim O ( t ) =  lim S ( z )  (54) 
t ~ 0 0  Z ~ 0  

In the ordered case, this asymptotic value is equal to 

lim O(t) = c 1 W-~- W (55) 
~oo  W - - w  

In the disordered case, taking into account the fact that s(t) behaves 
as t " at large times, one finds that O(t) behaves as t -~+1 (up to an 
additive constant). Its final value is thus either a constant (for/~ > 1, i.e., 
in situations of relatively weak disorder) or infinite (for # <  1, i.e., in 
situations of relatively strong disorder). It is interesting to note that the 
effect of disorder on O(t) depends on the value of the parameter #. 

In closing this section, let us recall that, in modeling photosynthetic 
systems, one usually introduces additional deexcitation channels in order 
to describe various intramolecular processes at each site. (3'4) Thus, e.g., in 
the discrete case, one assumes an additional term - k P , ( t )  in Eq. (7), with 
k being a site-independent rate constant. The preceding discussion can 
easily be generalized to include this new possibility of deexcitation. 
Namely, it is sufficient to multiply our results for pn(t) by a factor e -~' 
[-which amounts to shifting z into z + k in the Laplace transform pn(z)]. 
Then, of course, the total probability for the excitation to escape through 
the trap site (quantum yield for this site) will be less than one, namely 

= (c + k)  [~ po(t) dt = (c + k)  lim Po(z + k)  (56) qo 
Jo z ~ O  
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with Po(z)  as given by Eq. (16) or 

c + k  

~~ - c + w - W +  [ ( k +  w +  W)2 - 4w W ]  1/2 (57) 

in the ordered case. As for the disordered case, when these channels are 
taken into account, the quantity s( t )  behaves at large times as t ~ e x p ( - k t ) .  
The integral (53) yielding the average lifetime of the particle before it is 
captured by the trap is then finite for any #. The quantum yield r/o for the 
trap site could be derived along similar lines using (P(0,  E ) )  as given by 
Eq. (42), with E =  2 t l / r k ,  rk = ( x l / a )  k -1. 

7. C O N C L U S I O N  

We have studied the random-random walk of a particle on a chain 
with an attractive center, possibly trapping. The hopping rates were taken 
either as ordered or disordered. The particle was assumed to be located on 
the attractive center at initial time. When the possibility of trapping is 
taken into account, this model is relevant for the description of the transfer 
of energy in a photosynthetic system. Using the equivalent transfer rates 
technique, we have determined the asymptotic behavior of the probability 
of the presence of the particle at its initial point, in both ordered and disor- 
dered situations, without the trap and with the trap. As a result, disorder 
slows down the motion, as in the previously studied case of a biased chain. 

In the presence of a trap, the amount of energy conserved in the chain 
tends toward zero at infinite time, as it should, even in the presence of 
disorder. The slowing down of the motion induced by the disorder has a 
marked influence on the average lifetime of the particle before it is captured 
by the trap. 

However, it must be emphasized that the preceding results have been 
derived for a random f o r ce  model. Actually, the results could a priori  be 
different in the presence of other types of disorder. This question deserves 
further investigation. 
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